If  $z_1 = a + ib$ and $z_2 = c + id$ are complex numbers such that   $| z_1 | = | z_2 |=1$ and  $R({z_1}\overline {{z_2}} ) = 0$, then the pair of complex numbers $w_1 = a + ic$ and $w_2 = b + id$ satisfies

  • A

    $|w_1 |=1$

  • B

    $|w_2 |=1$

  • C

    $R({w_1}\overline {{w_2}} ) = 0$

  • D

    All the above

Similar Questions

The amplitude of $\sin \frac{\pi }{5} + i\,\left( {1 - \cos \frac{\pi }{5}} \right)$

The argument of the complex number $\frac{{13 - 5i}}{{4 - 9i}}$is

Find the number of non-zero integral solutions of the equation $|1-i|^{x}=2^{x}$

Let $\bar{z}$ denote the complex conjugate of a complex number $z$ and let $i=\sqrt{-1}$. In the set of complex numbers, the number of distinct roots of the equation

$\bar{z}-z^2=i\left(\bar{z}+z^2\right)$ is. . . . . .

  • [IIT 2022]

Let $z$ be a complex number with non-zero imaginary part. If $\frac{2+3 z+4 z^2}{2-3 z+4 z^2}$ is a real number, then the value of $|z|^2$ is. . . . . 

  • [IIT 2022]