If $z_1 = a + ib$ and $z_2 = c + id$ are complex numbers such that $| z_1 | = | z_2 |=1$ and $R({z_1}\overline {{z_2}} ) = 0$, then the pair of complex numbers $w_1 = a + ic$ and $w_2 = b + id$ satisfies
$|w_1 |=1$
$|w_2 |=1$
$R({w_1}\overline {{w_2}} ) = 0$
All the above
The amplitude of $\frac{{1 + \sqrt 3 i}}{{\sqrt 3 + 1}}$ is
If ${Z_1} \ne 0$ and $Z_2$ be two complex numbers such that $\frac{{{Z_2}}}{{{Z_1}}}$ is a purely imaginary number, then $\left| {\frac{{2{Z_1} + 3{Z_2}}}{{2{Z_1} - 3{Z_2}}}} \right|$ is equal to
If $Arg(z)$ denotes principal argument of a complex number $z$, then the value of expression $Arg\left( { - i{e^{i\frac{\pi }{9}}}.{z^2}} \right) + 2Arg\left( {2i{e^{-i\frac{\pi }{{18}}}}.\overline z } \right)$ is
For any two complex numbers ${z_1}$and${z_2}$ and any real numbers $a$ and $b$; $|(a{z_1} - b{z_2}){|^2} + |(b{z_1} + a{z_2}){|^2} = $
Let $z$ and $w$ be the two non-zero complex numbers such that $|z|\, = \,|w|$ and $arg\,z + arg\,w = \pi $. Then $z$ is equal to