If $z_1 = a + ib$ and $z_2 = c + id$ are complex numbers such that $| z_1 | = | z_2 |=1$ and $R({z_1}\overline {{z_2}} ) = 0$, then the pair of complex numbers $w_1 = a + ic$ and $w_2 = b + id$ satisfies
$|w_1 |=1$
$|w_2 |=1$
$R({w_1}\overline {{w_2}} ) = 0$
All the above
The amplitude of $\sin \frac{\pi }{5} + i\,\left( {1 - \cos \frac{\pi }{5}} \right)$
The argument of the complex number $\frac{{13 - 5i}}{{4 - 9i}}$is
Find the number of non-zero integral solutions of the equation $|1-i|^{x}=2^{x}$
Let $\bar{z}$ denote the complex conjugate of a complex number $z$ and let $i=\sqrt{-1}$. In the set of complex numbers, the number of distinct roots of the equation
$\bar{z}-z^2=i\left(\bar{z}+z^2\right)$ is. . . . . .
Let $z$ be a complex number with non-zero imaginary part. If $\frac{2+3 z+4 z^2}{2-3 z+4 z^2}$ is a real number, then the value of $|z|^2$ is. . . . .